
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED NOVEMBER, 2020 1

Jampacker: An efficient and reliable

robotic bin packing system for cuboid objects
Marichi Agarwal, Swagata Biswas, Chayan Sarkar, Sayan Paul, and Himadri Sekhar Paul

Abstract—Bin packing using a robotic arm is an important
problem in the context of Industry 4.0. In this work, we present
a reliable and efficient bin packing system, called Jampacker. We
propose a new offline 3D bin packing algorithm, called Jampack
that achieves higher packing efficiency in comparison to the
state-of-the-art algorithms. Jampack computes placement points,
called internal corner points that tries to maximize the utilization
of free spaces in-between objects, which are generally ignored by
existing algorithms. Additionally, we introduce a fault recovery
module (FRM) for the robotic manipulator that helps to achieve
a more reliable and efficient packing in a physical container. The
FRM module monitors the object placement by the robotic arm,
calculates a fault score for the placement, adjusts the placement
if required, and also learns & adjusts the offset for the placement
procedure on-the-go. We show that this system achieves faster
completion of the overall packing process.

Index Terms—Factory automation, Three-dimensional bin
packing, Logistics, Industrial robots, Fault tolerant manipulation.

I. INTRODUCTION

A
UTOMATION in the warehouse has various aspects

where pick and pack automation are the most imperative

ones. Modern warehouses use robotic fleets to fetch objects

from the storage racks spread across a large area. Many

existing studies focus on efficient goods movement (picking

problem) using a team of robots in typical fulfillment ware-

houses where the number of customers is large, and the order

volume per customer is very small [1]. On the other hand,

warehouses that serve as replenishment centers usually have a

smaller customer base and large order volume per customer.

In such scenarios, the packing problem has a higher emphasis.

In this article, we focus on efficient and autonomous object

packing using a robotic arm.

Motivation. Each order from customers at a replenishment

warehouse contains a large variety of objects (of different

quantities and sizes), and they are packed in larger boxes (bins)

before being transported to customers. Packing efficiency

involves both space and time. Better space utilization not only

reduces the required number of bins to pack all the objects,

but it can also reduce the transportation cost. On the other

hand, faster completion of packing impacts the overall order

processing time significantly. 3D bin-packing problem (3D-

BPP) is known to be NP-hard [2], [3] and several heuristics

Manuscript received: July 5, 2020; Revised: October 7, 2020; Accepted:
November 9, 2020.

This paper was recommended for publication by Editor Youngjin Choi
upon evaluation of the Associate Editor and Reviewers’ comments.

M. Agarwal, S. Biswas, C. Sarkar, S. Paul, and H. S. Paul are with the
Embedded Systems & Robotics Lab, TCS Research & Innovation, India.

Digital Object Identifier (DOI):

have been proposed to achieve a feasible solution [4], [5].

However, even if a 3D-BPP achieves a high space utilization,

the physical process of packing can be impacted by the

imperfection of the robotic arm or manipulator.

Problem description. Fig. 1 depicts a schematic of the bin

packing system along with overall system architecture. Since

the objective of any 3D-BPP algorithm is to maximize space

utilization, the placement strategy (coordinate) it generates

may leave no room between objects. The planner assumes

the manipulator to be perfect and can place any object at

the exact coordinate and with perfect orientation. However,

physical manipulators are never perfect. A slight displacement

of one object may disrupt the rest of the physical packing.

To mitigate imperfection in a manipulator, it can be aided by

employing a sensor-based feedback mechanism. Based on the

sensor feedback, the manipulator can readjust the placement

of the object at the desired location within a tolerable error.

Obviously, the higher the tolerable error, the lesser the read-

justment effort. This leads to the scenario where either not

all objects are packed, or extra space has to be allocated to

accommodate the higher tolerable error. On the other hand, the

lower tolerable error leads to a large number of readjustment

effort. However, if the manipulator is adjusted on-the-go, it

can save a lot of this effort and reduce the overall packing

time while achieving a high space utilization.

The major contributions of this work are as follows.

• We present an application-agnostic 3D bin-packing algo-

rithm (Jampack) for cuboid objects that achieves higher

space efficiency compared to the state-of-the-art. Most of

the 3D-BPP heuristics first sort the objects based on criteria

and then pack the objects one-by-one. They maintain the set

of packing points and find the most suitable point among the

feasible packing points for the current object to be packed.

We propose a new method called internal corner points that

finds and utilizes the packing points coherently, which leads

to higher packing efficiency.

• We also present a fault recovery module (FRM) for robotic

arms that can mitigate error in manipulation by dynamic

learning and adjustment. An independent sensory system

(e.g., vision-based) observes, analyzes, and provides feed-

back on the placement of an object to FRM. Based on this

feedback, FRM learns and estimates an effective error in

placement by the arm and computes an appropriate offset

correction for the manipulator. Then, the manipulator can re-

adjust the placement position of subsequent objects resulting

in more accurate placement. As a result, the FRM reduces

readjustment effort for wrong object placement, which in

turn improves the overall packing time.

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED NOVEMBER, 2020

Camera

Packing Robot

Camera

Delivery Conveyer Belt
Packer’s
Conveyer

Belt

Eye to Hand

Eye in Hand

Packing bins

(a) schematic of a 3D-bin packing system

3D Bin

Packing

Placement

Planner

FRMObjects

to pack

Arm

Controller

Motion

Planner

Perception

Module

Arm

Robotic

Cameras

Partition

re−pack

Place

Pick ’n’

C
o
rrectin

g
 O

ffsetP
la

ce
m

en
t

ar
ea

P
la

ce
m

en
t

(b) modular components of a 3D-bin packing system
(c) a kuka robot manipulator packing a
bin in simulation

Fig. 1: Jampacker – (a) an overview of the 3D-bin packing system, (b) highlighted modules showing scope of this article, (c)

a simulation setup depicting the system where sides of the bin are removed for better visualization.

• Finally, we propose an efficient bin packing system, called

Jampacker, which combines both Jampack and FRM with

a robotic arm motion planner that results in near-perfect

packing with minimal overall packing time.

II. A BRIEF LITERATURE SURVEY

The problem of robot packing involves two sub-problems

– bin packing problem and robotic manipulation. Bin packing

problem is a classical combinatorial optimization problem with

NP-Hard complexity. According to the typology proposed by

Wäscher et al. [6], bin packing problems can be classified

into three types based on the properties of the bins – (i) sin-

gle bin packing problem (BPP) with strictly homogeneous

bins, (ii) multiple bin packing problem (MBPP) with weakly

heterogeneous bins, and (iii) residual bin packing problem

(RBPP) with strongly heterogeneous bins. For all three types,

the objective of minimizing the number of bins remain the

same. The problem has been adapted for 1D [7], [8], 2D [9],

[10], 3D rectilinear [11] and 3D non-convex [12] type objects

or packing by features such as weight or volume.

The state-of-the-art exact algorithms for the offline 3D bin

packing use a branch-and-bound approach [13], [14]. Exact

methods have exponential complexity and fail to generate

the results within an acceptable time. Thus, various heuristic

and meta-heuristic approaches have been developed that work

close to the exact solution [15]. Some of the well-known

heuristics are first-fit decreasing [16], deepest-bottom-left-fill

(DBLF) [17], etc. Martello et al. [5] proposed a heuristic

that packs objects in the form of layers and combined the

layers. The objects are packed using the concept of corner

points (CPs) where a CP is a coordinate in the residual space

of the bin where an object can be accommodated. Recently,

Mahvash et al. [11] proposed a technique to pack 3D objects

in identical bins. The objects can be rotated in all directions

and placed in the bins in six orientations. They utilized the

concept of extreme points (proposed by Crainic et al. [4]), an

extension of the corner point method, and fuse it with linear

programming to find an efficient solution. We propose a better

approach to find the corner points, called internal corner point

and achieves a higher packing efficiency.

Some evolutionary methods are also proposed by re-

searchers, such as simulated annealing [18], particle swarm

optimization [19], [20], ant colony optimization [21], nature-

inspired meta heuristic [22], etc. However, these methods

usually take a long time to find a solution, and often the

solutions are not as good as the classical techniques.

Elhedhli et al. [23] and Gzara et al. [24] propose a 3-

dimensional bin-packing using Layer Based Column Gener-

ation approach. Layers are generated heuristically using a

relaxed version of the pricing problem as well as using the

Maxrects heuristic [25]. At the end of the column generation

procedure, a set of layers of objects are generated. The bin

construction heuristic selects layers ordered in descending

order of density and places them sequentially in a set of open

bins. However, it does not guarantee proper utilization of space

between the layers.

Accuracy of a robot is the measure of its ability to reach

a specified task-space and orientation [26]. Inaccuracies in

robotic tasks generally occur due to a combination of joint

error, manufacturing error, and arm deflections. The error

analyses lead to the development of a feasible joint-tolerance

domain and authors in [27] present a mathematical treatment

of the subject. A more application-oriented study of the field is

presented by Zou et al. [28] where they study placement error

by robotic arms using vision-based sensing. A machine vision-

based fault tolerance mechanism has been proposed in [29].

Their proposed technique involves continuous monitoring of

arm angles, estimating deviations, and they control the on-

going movement of a joint. A generic study of fault tolerance

in robotics can be found in [30]. The basic architecture of the

FRM is inspired by those presented in the study.

III. PROBLEM DEFINITION

We address the problem of packing a set of rectilinear

objects of varied dimensions into bins of fixed dimensions.

The objects are to be packed by a robotic arm to achieve

operational efficiency. The overview of our system is shown

in Fig. 1. Since all the objects are known before-hand, we need

an offline 3D bin-packing method that can pack all the objects

in a minimum number of bins. Additionally, we provide the

location of each object inside the bins and the placement

sequence such that the placement satisfies the constraints

associated with robotic arm movements. As the robotic arm

can inject some error while executing, i.e., off-location placing

AGARWAL et al.: JAMPACKER 3

Algorithm 1: Jampack: A heuristic for generating

packing pattern for a given set of objects.

Input: set of sorted objects to be packed (O), bin

dimension (W, L, D).

Output: object list (O) updated with the bin id in

which it is packed and packing location.
1 Procedure Jampack(O,W,L,D)

2 B ← φ;
3 newBin = openNewBin(W,L,D);
4 newBin.icp← [[0, 0, 0], [W,L,D]];
5 B ← B + newBin;
6 for (o ∈ O) do
7 for b ∈ B do
8 for c ∈ b.icp do
9 for each orientation do

10 if canAccommodate(o, c) then
11 assignPackingPoint(o, c);
12 b.icp← updateICP(o, b.icp);
13 removeDuplicateICP(b.icp);
14 goto line 6;

15 if B.index(b) == len(B)− 1 then
16 newBin = openNewBin(W,L,D);
17 newBin.icp← [[0, 0, 0], [W,L,D]] ;
18 B ← B + newBin;

19 return O;

of the objects; correct and reliable packing is another essential

component of our system.

Given a set of n heterogeneous objects with dimension wi×

hi × di, (i ∈ 1, 2, ..., n) to be packed into homogeneous bins

of dimension W ×H ×D. The objects are placed in the bins

subject to the following constraints – (i) each object is placed

inside only one bin, (ii) object lies within the limits of the bin,

(iii) the objects are not rotated, and (iv) there is no overlap of

objects.

If the placing point of the ith object (back-left-bottom)

is decided as < xi, yi, zi > and the actual placing point is

< x
′

i, y
′

i, z
′

i > , we define two threshold values δ and δTH
to decide the tolerance bounds for error in execution. Let Ti

denote the volume occupied by item i when its positioning is

transformed due to translational and rotational error.

IV. JAMPACK: AN EFFICIENT ALGORITHM FOR 3D-BPP

In this section, we describe Jampack that packs a set

of cuboid objects in a minimum number of bins. Jampack

comprises of three aspects – (a) object sorting criteria, (b) gen-

erating the set of packing points, and (c) finding the most

suitable point among the feasible packing points for the next

object to be packed. The efficiency of Jampack stems from

our packing point generation technique, called internal corners

point (ICP), which generates all the extreme points (EPs) [4]

along with some additional feasible points.

A. Algorithm Description

Jampack initially sorts all the objects by non-increasing

base area (with ties broken by height in non-decreasing order).

Other sorting techniques as proposed by Crainic et al. [4] can

also be used, but they do not seem to provide any distinct

advantage over this one.

Given a list of sorted objects O and bins with dimension

W×L×D, Algorithm 1 packs them using the concept of ICP.

Jampack maintains a list of ICPs (x, y, z) (back-left-bottom

corner) and their corresponding bounding corner point or BCP

(x′, y′, z′) (front-right-top corner) for each bin, where an ICP-

BCP pair represents a contiguous free space along all the three

axes. For an empty bin, its ICP-BCP pair is initialized with

(0, 0, 0) and (W,L,D).

For each object o ∈ O, Jampack scans through all the

ICPs (c ∈ b.icp) for each bin (b ∈ B) and identifies the

ICP, c, that can accommodate the object using procedure

canAccommodate (line 10 in Algorithm 1). An object o with

dimension (wo, lo, do) can be accommodated at an ICP if and

only if, (x′ − x ≥ wo) and (y′ − y ≥ lo) and (z′ − z ≥ do).
If the object cannot fit at an ICP with the current orientation,

it is rotated (line 9). Altogether an object can be placed in six

different orientations. The highest priority is given to the ICP

that places the object closer to the base and the left and back

wall of the bin, i.e., the ICP with the lowest values of z, y, x (in

this order). The chosen ICP is assigned as the packing point

for the object (line 11). In case no feasible corner is found

in any of the open bins, a new bin is opened, and (0, 0, 0) is

assigned as the packing point for the object.

Given the list of ICPs and the packing coordinate of the

newly placed object, procedure updateICP (line 12) updates

the existing ICPs (if required) and generates new ICP-BCP

pairs (if any). In a nutshell, the idea is to split each of the

overlapping vacant spaces by the plane drawn along each side

of the object. The back-left-bottom corner of each of the new

free volumes is the new ICPs. Details are in Algorithm 2.

Finally, the duplicate and coinciding ICPs are removed by

the procedure removeDuplicateICP (line 13). If no feasible

packing point is found in any of the open bins, a new bin

is opened (lines 15-18). The algorithm continues until all the

objects are assigned a packing point in any of the bins.

B. Time Complexity Analysis

The outer loop in Algorithm 1 runs for all the objects to be

packed, i.e., n iterations, where n is the total number of objects

to be packed. The next two inner loops (line 7 and 8) runs

for all the open bins in the system and the number of ICPs in

the bin, respectively. The innermost loop (line 9) runs for the

number of possible orientations of a cuboid object, i.e., six.

Since it is a constant, it does not contribute to the complexity

of the overall algorithm. Packing a new object adds at most

three new ICPs to the bin’s list. When there are k objects per

bin, these two loops will run for (n/k)∗(k∗3) iterations, which

is O(n). Now, Algorithm 2 has the worst-case run-time of n
when all the objects are packed in a single bin and there are

n∗3 corner points. This is called by Algorithm 1 for n2 times

in the worst case. Thus, the overall complexity of Jampack is

O(n3).

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED NOVEMBER, 2020

Controller Evaluate St Determine next AReview Wn

Analyze Wn

S, T, A,
R, Wn

1. Executes A
2. Determines St

1. St checked against R
2. Ct = 1-∑Ri
3. Update Wn

If Ct degrading over
time or Ct < Threshold

St Wn

A

Probable faulty components are
identified by studying last n Ct and St

Adjust

Abort

S System model
T Task
A Action
R Regulation list
Wn Monitoring window
St System state
Ct Fault score

Fig. 2: Fault recovery module comprised of safety score estimation and adjustment on-the-go.

Algorithm 2: Pseudo code for generating new ICPs

and updating the existing ones.

Input: object (o) with dimension (wo, lo, do) added to

the bin at coordinate (xo, yo, zo) , list of

existing ICPs (b.icp) in bin (b).
Output: updated list of ICP-BCP pairs of bin b.

1 Procedure updateICP(o, b.icp)
2 newICP ← φ ;
3 for (c ∈ b.icp) do
4 if isOverlapping(o, c) then
5 if xo > xc then

6 icpBack = [[xc, yc, zc], [xo, y
′

c
, z′

c
]];

7 newICP ← newICP + icpBack;

8 if xo + wo < x′

c
then

9 icpFront = [[xo + wo, yc, zc], [x
′

c
, y′

c
, z′

c
]];

10 newICP ← newICP + icpFront;

11 if yo > yc then

12 icpLeft = [[xc, yc, zc], [x
′

c
, yo, z

′

c
]];

13 newICP ← newICP + icpLeft;

14 if yo + lo < y′

c
then

15 icpRight = [[xc, yo + lo, zc], [x
′

c
, y′

c
, z′

c
]];

16 newICP ← newICP + icpRight;

17 if zo > zc then

18 icpBottom = [[xc, yc, zc], [x
′

c
, y′

c
, zo]];

19 newICP ← newICP + icpBottom;

20 if zo + do < z′
c

then

21 icpTop = [[xc, yc, zo + do], [x
′

c
, y′

c
, z′

c
]];

22 newICP ← newICP + icpTop;

23 b.icp← b.icp\c

24 b.icp← b.icp+ newICP ;
25 return b.icp;

V. FAULT RECOVERY MODULE (FRM)

The objective of this module is to detect and measure

deviations in object placement and then estimate a placement

offset value to mitigate deviations in future placements. The

general workflow of the fault recovery process for an on-line

fault rectification is shown in Fig. 2 .

The FRM module is a software system (S) that works in

tandem with the perception module, placement planner, and

motion planner to identify the faults and attempt recovery.

While executing a given task T , the system is required to

abide by a set of regulations. Each of the regulations (say Ri)

is associated with a measurement and two threshold and can

be defined as a tuple r =< rim, riff , r
i
fs >. The value rim is

a measure computed from single or multiple sensor readings

available with the system S. The other two quantities are the

thresholds to determine the state of the system, w.r.t. rim. If

rim ≤ rinf the system is in a non-faulty state (NF). When rim ≤

rifs the system is in faulty-but safe state (NS). Otherwise, the

system is in a fault state (FT). Each of these states is associated

with a penalty value and is denoted as pis, where s indicates

the state. Typically, piNF = 0 and piFS < piFT .

A system’s extent of fault is computed as an accumulation of

penalty value for all defined regulations. The Fault Score of the

system at instance t is computed as Ct =
∑m

i=1
αiPi, where

m is the number of regulations, Pi is the penalty of the system

due to regulation Ri, and αi is the relative importance of the

regulation for the overall failure of the system. The FRM also

maintains a Monitoring Window, Wn = [< Ct, ST >: ti ≤

t ≤ tj], where the system keeps a record of its fault scores

and system states of last n steps. The sensor readings, software

states, hardware states, etc., determine the system state.

Fig. 2 depicts the system model S, the assigned task T, the

immediate next action A, regulation list R, and monitoring

window size n that are given as input to the controller.

The controller initiates action A, and records & checks the

system state against the regulation list R. The fault score

Ct is computed and evaluated against the latest n − 1 score

values. If a consistent degradation of the safety score over

(Ct, Ct−n) is observed or the fault score Ct is below a given

threshold Cth, the system state of last n steps are analyzed

to identify the probable faulty component. Once the faulty

component is identified, the controller re-adjusts the given

system accordingly and determines the next action A. If the

system is beyond repair then the controller aborts the task.

VI. JAMPACKER: THE BIN-PACKING FRAMEWORK

The overall bin-packing framework, whose architecture is

shown in Fig. 1b, utilizes Jampack, a 3D-BPP solution, and

FRM to achieve fault-tolerant compact packing. After, Jam-

pack determines the sets of objects along with their packing

points for each of the bins, the placement planner first,

generates the packing sequence for the robotic arm. Then, the

placement planner works in tandem with FRM and the motion

planner, which takes feedback on the actual placement from

the perception module, to determine the rectified placement

location of the next object.

A. Placement Planner

This module generates a dependency plan amongst objects

to be packed in a bin. Placement sequence is represented by a

directed acyclic graph (DAG), G(V,E) with vertices V ∈ I ,

where I is the set of packed objects and edge e = (u, v)

AGARWAL et al.: JAMPACKER 5

Algorithm 3: FRM: Placement of object with retry

Input: S : System Model, T : Assigned Task, R :
Regulation List, W : Monitoring window

Output: Pos : Actual placement position of the object
1 Position robotic arm at sensing position;
2 Object Recognition;
3 Position arm at picking position;
4 Pick object and move to target location given in T ;
5 Place Object;
6 Sense position of the placed object ;
7 SC = Evaluate R ;
8 if SC indicates system faulty then
9 Compute position error E;

10 Apply negated offset for E to target location;
11 Pick object and place at new location;

12 Perform Steps 6-8 for up to k iterations. Manual intervention
required if system is in faulty state after k attempts;

13 Pos = Observe bounding box of the object;
14 Update W with SC;
15 Return P ;

connecting the vertices u and v if object u must be placed

before object v. Before placing an object v, all its predecessor

objects (the objects below it and on its left) must be placed.

A buffer of 10% (determined in Section VII-C) is provided

around each object (along the X−Y plane) before generating

the packing points. So the computed placement points for each

object may need to be adjusted depending on the consumption

of buffer space by the robotic arm for an object already packed.

This planner module gives one object to pack to the arm and

then receives feedback from the FRM on the actual placement

position of an object. Based on this information, the placement

position of the rest of the objects is adjusted by the planner.

B. FRM in Action

FRM observes every attempt to place an object inside

a bin. When it finds that the system is in a faulty state

due to placement error, i.e., the object’s placement is not

contained within its buffer area, it re-adjusts the placement

points for the arm to enable a more accurate placement. The

FRM module allows k re-attempts for an object after that

manual intervention is required. After placement, it informs

the planner module of the actual position of the object. The

FRM process is depicted as Algorithm 3.

In this work, we are concerned only with the proper

positioning of the object in the bin and consider the rest of the

process error-free. Let the target drop location of the object

O be (x1,y1,z1) as specified by the placement planner. In the

X − Y plane, let the bottom co-ordinates of the object be

(x1, y1), (x2, y2), (x3, y3) and (x4, y4). We ignore the error

along the z-axis as it depends on the gravitational force and

is beyond manual control. While placing the object in the

defined location, the controller may encounter a translation

error (ǫx, ǫy) followed by a rotational error θ along the vertical

axis through the center of gravity of the object (p, q) around

the origin as shown in Fig. 3.

Let the co-ordinates of the object in X − Y plane after

translation error be (x
′

1, y
′

1), (x
′

2, y
′

2), (x
′

3, y
′

3) and (x
′

4, y
′

4),
and after rotational error be (x

′′

1 , y
′′

1), (x
′′

2 , y
′′

2), (x
′′

3 , y
′′

3) and

(x1, y1)

x1+𝜖xx1

(x2, y2)

(x3, y3) (x4, y4)

(x1
’’, y1

’’)

(x2
’’, y2

’’)

(x3
’’, y3

’’) (x4
’’, y4

’’)

y1

y1- 𝜖y

(p, q)

Δ

Δ

ΔTH

ΔTH

Θ

Fig. 3: Translation and rotational error handling.

(x
′′

4 , y
′′

4). This can be evaluated as given in Eq. 1. As shown

in Fig. 3, a tolerance of ∆ is given to each of the object placed

by the planner.

xi
′ = xi + ǫx yi

′ = yi + ǫy

p =
x1

′ + x2
′

2
q = y1

′
+y3

′

2

xi
′′ = (xi

′ − p) cos(θ)− (yi
′ − q) sin(θ) + p

yi
′′ = (xi

′ − p) sin(θ) + (yi
′ − q) cos(θ) + q (1)

Here, a single rule is defined in the Regulation List. The

bottom plane of the object should be placed within the

Tolerance Bounded Region bounded by (x1−∆, y1+∆), (x2+
∆, y2 + ∆), (x3 −∆, y3 −∆) and (x4 + ∆, y4 −∆). If this

condition is satisfied then S is in fault-free state (sff = 1) and

penalty is pff . If the object is not placed within the above men-

tioned bounded region but it is within the Threshold Bounded

Region, (x1 − ∆TH ,y1 + ∆TH), (x2 + ∆TH ,y2 + ∆TH),

(x3 −∆TH ,y3 −∆TH) and (x4 +∆TH ,y4 −∆TH), then S is

in fault safe state, sfs = 1 and the penalty is pfs.

This is the case shown in Fig. 3 and the action needs to be

rectified, i.e., the action is re-executed to minimize the error.

If the object is placed outside the Tolerance Bounded Region,

then S is in faulty state, sf = 1 and the penalty given is pf . If

the first attempt to place the object results in a faulty state, the

arm observes the displacement and computes a new location as

a target based on the error observed. This is simply a negated

error applied to the target location specified by the planner.

The arm makes k such retries to place the object within the

permitted placement area. The determination of the value k is

an adjustment process of the arm and depends on the actual

hardware component.

Initially, the fault score list for the monitoring window is

assigned with value zero. The controller initiates action A and

after the execution of A, the system state is recorded. The

system state, in this scenario, is defined as the actual co-

ordinates of the corners of the bottom surface of the object.

The fault score is also evaluated as Ci = 1 − αP where Ci

refers to the fault score after executing ith action, P refers

to the penalty given, and α represents the weighting factor.

Here P = pff × sff + pfs × sfs + pf × sf and α = 1.

The system state and the fault score for the same are then

recorded in Wn. Wn records the system state and fault score

for the last n actions. Wn is analyzed. If the fault score, Ci

is less than the threshold value, Cth, then the system state is

analyzed to identify the fault. The controller identifies the fault

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED NOVEMBER, 2020

in the positioning of the objects. According to the analyses, the

controller adjusts the system, i.e., the drop location (x1, y1, z1)
are redefined as (x0+δx, y0+δy, z0+δz) and proceeds to the

next object packing action. The controller initiates a manual

intervention if the fault is irreparable(for example, when the

object is dropped outside the bin).

C. Motion Planner

We have used an off-the-shelf RRT motion planner (OMPL

library) to solve the task at hand. We assume that the maximum

reach of the robot and the initial robot position is such that

the robot manipulator is capable of placing the objects in

any position within the given bin. Now, given the initial and

target positions, the planner samples in joint space, checks for

collisions in task space, and provides the trajectory plan while

taking care of the kinematic restrictions of the manipulator.

The entire picking and placing task is divided into two parts,

and the trajectory plans are generated for each separately. The

first part of the trajectory planning involves picking up the

object from the conveyor belt and positioning the arm at the

fixed height above the bin and vice-versa after the placement of

the current object. The second part involves moving the arm

from the fixed height position above the bin to the placing

location and vice-versa including the placement readjustment

(k retries by FRM). The collision checks and plan generations

are performed in between every two manipulations as the

newly placed objects bin are also treated as obstacles during

the planning of the next task.

VII. EVALUATION

We evaluate Jampacker in three phases – (i) we compare the

performance of Jampack with two state-of-the-art algorithms,

(ii) we demonstrate the efficacy of FRM, and (iii) we showcase

how the overall framework can achieve reliable and efficient

packing.

A. Dataset and Methodology for 3D-BPP

We present our analysis for two categories of datasets.

(a) standard datasets: class 1 and classes 4-8 as described

by Martello et al. [13] where the instances (object dimension

and bin dimension) are generated using the available C code1.

Bins are cubic in these instances. Following the experimental

protocol of [4] and [13], we did not consider classes 2 and 3

because these have properties similar to those of class 1.

(b) industry dataset: the three categories of datasets large,

medium and small that are provided by our client partner and

were packed at their sorting center. The objects in this category

are of varied dimensions, and the bin is relatively large. The

classification of the objects as large (35 − 50 objects/bin),

medium (50−65 objects/bin), and small (65−80 objects/bin);

depends on how many objects are required to fill up a bin

optimally. The bin size used is 220cm × 120cm × 80cm (a

regular container size used by our client partner).

We randomly sampled 10 instances of each of the 9 different

datasets, such that objects of each instance would optimally

fill 20 bins. In total, we created 90 instances.

1http://www.diku.dk/∼pisinger/codes.html

TABLE I: Comparison of average no. of bins used to pack all

objects and average bin utilization of first 20 bins for various

datasets using EP-FFD (EP), LCGA (LC), and Jampack (JP).

Dataset
Avg. bin count Avg bin utilization (%)

EP LC JP EP LC JP

Class 1 29.1 28.6 25.5 72.47 78.07 81.76

Class 4 39.4 39.2 38.9 64.16 61.5 65.78

Class 5 28 28.1 26.4 78.14 77.97 83.4

Class 6 25.2 24.2 22.3 85.58 86.17 93.34

Class 7 28.5 26.8 24.6 78.27 80.97 87.9

Class 8 28.3 27.2 25.2 78.02 79.19 85.37

large 26.2 24.9 23.9 78.12 82.7 87.27

medium 26.8 24 23 78.32 84.44 88.83

small 25.4 24 23 82.57 84.76 89.47

TABLE II: Object placement planning using EP-FFD and

Jampack for objects shown in Fig. 4a and Fig. 4b.

Placement
sequence

Object
dim.
(w,h,d)

Extreme Point - FFD Jampack

Placed at
Updated
EP-RS

Placed at
Updated
ICP-BCP

empty (0,0,0)(10,10,10) (0,0,0)(10,10,10)

1
(red)

(4,4,8) (0,0,0)

(4,0,0)(10,10,10)
(0,4,0)(10,10,10)
(0,0,8)(10,10,10)

(0,0,0)

(4,0,0)(10,10,10)
(0,4,0)(10,10,10)
(0,0,8)(10,10,10)

2
(blue)

(8,4,4) (0,4,0)

(4,0,0)(10,4,10)
(0,0,8)(10,10,10)
(8,0,0)(10,10,10)
(0,8,0)(10,10,10)
(0,4,4)(10,10,10)

(0,4,0)

(4,0,0)(10,4,10)
(0,0,8)(10,10,10)
(8,0,0)(10,10,10)
(0,8,0)(10,10,10)
(0,4,4)(10,10,10)
(4,0,4)(10,10,10)

3 (4,8,4)

no corner
found.

open
new bin

(4,0,4)

(4,0,0)(10,4,4)
(0,0,8)(10,10,10)
(8,0,0)(10,10,10)
(0,8,0)(4,10,10)
(0,8,0)(10,10,4)
(0,4,4)(4,10,10)

B. Efficiency of Jampack

To scrutinize the efficacy of Jampack, we compare it with

extreme-point first-fit-decreasing (EP-FFD) heuristic proposed

by Crainic et al. [4] and layer based column generation

approach (LCGA) proposed by Elhedhli et al. [23]. We

evaluate Jampack based on two metrics – (i) the total number

of bins required to pack all the objects, and (ii) the average bin

utilization of the first 20 bins (since we sampled objects that

can optimally fill 20 bins). Utilization for each bin is given

by,

utilization =
total volume of the packed objects

bin volume
× 100%.

The results enlisted in TABLE I are averaged over 10

instances of each type of the 9 datasets (the reason for the Avg.

bin count to be in decimal). Armed with empirical results, we

(a) EPs (b) ICPs

Fig. 4: EPs and ICPs generated by EP-FFD and Jampack

respectively by placing two objects.

AGARWAL et al.: JAMPACKER 7

 0

 5

 10

 15

 2 4 6 8 10
 980

 985

 990

 995

 1000

Fa
u
lt

y
 s

ta
te

s

N
o
n
-f

a
u
lt

y
 s

ta
te

s

Monitoring window size

Faulty states
Non-faulty states

(a)

 0

 10

 20

 30

 10 20 30 40 50

Fa
u
lt

y
 a

tt
e
m

p
ts

Buffer Space (%)

(b)

 0

 1

 2

 3

 4

 5

5 10 15 20 25 30

Fa
u
lt

y
 a

tt
e
m

p
ts

Buffer space (%)

(c)

1 4 5 6 7 8 L M S
Dataset class

0

1

2

3

4

F
a
u

lt
y
 p

la
ce

m
e
n

ts

(d)

Fig. 5: Performance of FRM – (a) for varying window size, (b) for varying buffer space, (c) for varying buffer space of 1000

objects (window size 4), (d) for varying class of 1000 objects (buffer space 10%, window size 4).

1 4 5 6 7 8 L M S
Dataset class

0

10

20

30

40

50

Nu
m

be
r o

f r
ec

tif
ica

tio
ns Without FRM

With FRM

Fig. 6: Number of rectifications required to pack 50 objects.

state that Jampack outperforms both EP-FFD and LCGA for

both standard and industry datasets in terms of the number of

bin required and the bin utilization.

Packing point generation and selection proposition favor the

overall efficiency of a bin packing algorithm. As EP-FFD does

not generate all feasible packing points, which is added by

Jampack, as shown in Fig. 4a and Fig. 4b, it requires more

bins to pack all the objects. TABLE II elaborates a packing

plan for the objects shown in Fig. 4a and Fig. 4b. To pack

them, EP-FFD uses 2 bins whereas all three can be packed

in a single bin using Jampack. With these additional corner

points, Jampack increases the packing efficiency of the state-

of-the-art EP-FFD algorithm by 1.62%−10.51%. Additionally,

Jampack efficiently utilizes the small vacant spaces in between

objects to pack objects with smaller dimensions.

When the objects are of highly varying dimensions, it does

not favor layering. In other words, there is always some wasted

space when layers are built using heterogeneous types of

objects. This is precisely the case in our dataset. As a result,

Jampack outperforms LCGA. In particular, Jampack uses 1−3
bins less and achieves 3.69% − 7.17% higher utilization per

bin in comparison to LCGA.

C. Efficacy of FRM

We assume that the maximum reach of the robot and the

initial robot position is such that the robot manipulator is

capable of placing objects in any position within the given

bin. As mentioned earlier, if an object is placed within the

predefined buffer space, then it is considered to be a non-faulty

placement; otherwise, it is considered as a faulty placement.

In case of a faulty placement, the system re-attempts until

the object is placed within the buffer space, and it initiates a

manual intervention after k attempts. Also, the system re-tries

to rectify the placement error at each attempt using its past

state information from the monitoring window.

Monitoring window size and the buffer space are the two

parameters that affect the efficacy of FRM. To determine the

values of these parameters, we have simulated 1000 objects

of variable dimensions and analyzed the effect of Gaussian

distributed translation and rotational error while placing each

object at a predefined location. The object placement error is

due to the final positioning error of the robot end-effector. The

sources of this error are varied ranging from manufacturing,

assembling, installation, sensing to even temperature chang-

ing [31]. Therefore, to study the effect of the final positioning

error of the robot end-effector, we have assumed that the

translational and rotational error follows Gaussian distribution.

Similar studies are also done in [32]. We empirically choose

the minimum monitoring window size when the number of

faulty states gets minimized and the number of non-faulty

(fault-free and fault-safe) states get maximized (Fig. 5a). The

minimum monitoring window size is chosen to decrease the

computational cost. It is observed that the number of faulty

states increases with window size. This is because the system

encounters multiple faults prior to its rectification of error

using its past state information from the monitoring window.

In Fig. 5b, we observe that the number of faulty placements

reduces significantly when buffer space is 10% of the object

area. The number of faulty placements further reduces and

stabilizes at a buffer space of ≈ 25%. However, such a large

buffer space will result in inefficient bin space utilization. This

is also true for the real-world dataset (class 10) as shown in

Fig. 5c. Therefore, for all our experiments, we have considered

monitoring window size=4 and buffer space to be 10% of

object dimension. We have tested and validated for different

class of 1000 objects (Fig. 5d). The average of 10 simulation

results is shown in Fig. 5c and Fig. 5d.

D. Overall performance of Jampacker

Jampacker is integrated with a motion planning algorithm

and tested using Webots [33] simulation environment. Fig. 1c

depicts our simulation setup using a KUKA robotic ma-

nipulator. We have tested the system using the datasets as

described in Section VII-A. We have also considered the

monitoring window size 4 and 10% buffer space as discussed

in Section VII-C. The result is outlined in Fig. 6. Here, we

have compared the number of rectifications required to pack

the bin with and without FRM. The number of rectifications

refers to the number of faulty attempts and re-attempts made to

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED NOVEMBER, 2020

place the objects within their predefined buffer space. Without

FRM, the Kuka robot plans to place the object in the target

location. If it fails to place it within the predefined buffer

space, it re-attempts to place it in the target location ignoring

the knowledge gained from previous placement attempts. This

process continues until the Kuka robot successfully places the

object within the predefined buffer space. On the contrary, the

FRM module learns from its previous actions and readjusts

as explained in Section V to minimize the number of recti-

fications required. Fig. 6 clearly depicts that the number of

rectifications required is significantly less when we deploy the

FRM module. The number of rectifications required is directly

proportional to the time required for packing. Therefore, the

FRM module reduces the overall bin packing time and also

minimizes the number of manual interventions required. After

the packing, we evaluate the difference between the planned

buffer space and the actual buffer space utilized. This helps in

estimating the optimal buffer space required to pack a bin.

It is observed that in certain cases the buffer space saved

ranges between 2% − 5%. The estimated saved buffer space

can be reused to pack another object in the same bin. Also, this

state information can be reused to pack the next bin. Hence,

ensuring maximal bin space utilization.

VIII. CONCLUSIONS

In this work, we describe Jampacker, a robotic arm based

automatic packer. The system comprises of two major compo-

nents – an efficient 3D bin packing (3D-BPP) algorithm, called

Jampack, and a fault recovery module (FRM) for the robotic

arm. Using our proposed method of internal corner points,

Jampack performs better than the state-of-the-art algorithm;

thus applicable to any generic 3D-BPP application. On the

other hand, we enhance the reliability of a robotic manipulator

by estimating and adjusting the possible error of placing

an object on-the-go, which is also application-agnostic. Our

system reduces the overall time of readjustment after placing

an object incorrectly, resulting in overall faster completion of

packing. In the future, we would be extending this work with

actual sensor-based feedback for motion planning as well as

to object identification and displacement detection inside a

bin. Also, we shall extend the FRM by considering sensor

accuracy.

REFERENCES

[1] C. Sarkar and M. Agarwal, “Cannot avoid penalty? let’s minimize,” in
2019 Intl. Conf. on Robotics and Automation (ICRA). IEEE, 2019, pp.
1052–1058.

[2] S. Martello et al., “The three-dimensional bin packing problem,” J. of

the Operational Research Soc., vol. 48, no. 2, pp. 256–267, 2000.

[3] T. Crainic et al., Recent advances in multi-dimensional packing prob-

lems, 2012.

[4] T. G. Crainic et al., “Extreme point-based heuristics for three-
dimensional bin packing,” Informs J. on Computing, vol. 20, no. 3, pp.
368–384, 2008.

[5] S. Martello et al., “Algorithm 864: General and robot-packable variants
of the three-dimensional bin packing problem,” ACM Transactions on

Mathematical Software (TOMS), vol. 33, no. 1, p. 7, 2007.

[6] G. Wäscher et al., “An improved typology of cutting and packing
problems,” Eur. J. of Operational Research, vol. 183, no. 3, pp. 1109–
1130, 2007.

[7] D. S. Johnson et al., “Worst-case performance bounds for simple one-
dimensional packing algorithms,” SIAM J. on Computing, vol. 3, no. 4,
pp. 299–325, 1974.

[8] A. C. Alvim et al., “A hybrid improvement heuristic for the one-
dimensional bin packing problem,” J. of Heuristics, vol. 10, no. 2, pp.
205–229, 2004.

[9] Y.-P. Cui et al., “Sequential heuristic for the two-dimensional bin-
packing problem,” Euro J of Operational Research, vol. 240, no. 1,
pp. 43–53, 2015.

[10] A. Lodi et al., “Partial enumeration algorithms for two-dimensional
bin packing problem with guillotine constraints,” Discrete Applied

Mathematics, vol. 217, pp. 40–47, 2017.
[11] B. Mahvash et al., “A column generation-based heuristic for the three-

dimensional bin packing problem with rotation,” J. of the Operational

Research Soc., vol. 69, no. 1, pp. 78–90, 2018.
[12] F. Wang and K. Hauser, “Stable bin packing of non-convex 3d objects

with a robot manipulator,” in Intl. Conf. on Robotics and Automation

(ICRA). IEEE, 2019, pp. 8698–8704.
[13] S. Martello et al., “The three-dimensional bin packing problem,” J. of

the Operational Research Soc., vol. 48, no. 2, pp. 256–267, 2000.
[14] M. Delorme, M. Iori, and S. Martello, “Bin packing and cutting stock

problems: Mathematical models and exact algorithms,” Euro J. of

Operational Research, vol. 255, no. 1, pp. 1–20, 2016.
[15] L. Wang et al., “Two natural heuristics for 3d packing with practical

loading constraints,” in Pacific Rim Intl Conf. on AI. Springer, 2010,
pp. 256–267.

[16] B. Xia and Z. Tan, “Tighter bounds of the first fit algorithm for the
bin-packing problem,” Discrete Applied Mathematics, vol. 158, no. 15,
pp. 1668–1675, 2010.

[17] L. Wang et al., “Two natural heuristics for 3d packing with practical
loading constraints,” in Pacific Rim Intl. Conf. on AI. Springer, 2010,
pp. 256–267.

[18] T. Kämpke, “Simulated annealing: use of a new tool in bin packing,”
Annals of Operations Research, vol. 16, no. 1, pp. 327–332, 1988.

[19] D. Liu et al., “On solving multiobjective bin packing problems using
evolutionary particle swarm optimization,” Euro J of Operational Re-

search, vol. 190, no. 2, pp. 357–382, 2008.
[20] T. S. Li, C. Liu, P. Kuo, N. Fang, C. Li, C. Cheng, C. Hsieh, L. Wu,

J. Liang, and C. Chen, “A three-dimensional adaptive pso-based packing
algorithm for an iot-based automated e-fulfillment packaging system,”
IEEE Access, vol. 5, pp. 9188–9205, 2017.

[21] J. Levine and F. Ducatelle, “Ant colony optimization and local search for
bin packing and cutting stock problems,” J. of the Operational Research

Soc., vol. 55, no. 7, pp. 705–716, 2004.
[22] M. Abdel-Basset et al., “An improved nature inspired meta-heuristic

algorithm for 1-d bin packing problems,” Personal and Ubiquitous

Computing, vol. 22, no. 5-6, pp. 1117–1132, 2018.
[23] S. Elhedhli et al., “Three-dimensional bin packing and mixed-case

palletization,” Informs J. on Optimization, vol. 1, no. 4, pp. 323–352,
2019.

[24] F. Gzara et al., “The pallet loading problem: Three-dimensional bin
packing with practical constraints,” Euro J. of Operational Research,
2020.

[25] J. Jylänki, “A thousand ways to pack the bin-a practical ap-
proach to two-dimensional rectangle bin packing,” retrived from

http://clb.demon.fi/files/RectangleBinPack.pdf, 2010.
[26] R. G. Fenton, “Accuracy and repeatability of robots,” Un. of Toronto,

ON, Tech. Rep., 1984.
[27] B. Benhabib et al., “Computer-aided joint error analysis of robots,” IEEE

Journal on Robotics and Automation, vol. 3, no. 4, pp. 317–322, 1987.
[28] X. Zou et al., “Fault-tolerant design of a limited universal fruit-

picking end-effector based on vision-positioning error,” Applied Engg.

in Agriculture, vol. 32, no. 1, pp. 5–18, 2016.
[29] X. Li et al., “Fault-tolerant control method of robotic arm based on

machine vision,” in Chinese Control and Decision Conference (CCDC),
2018, pp. 484–489.

[30] M. L. Visinsky et al., “Robotic fault detection and fault tolerance: A
survey,” Reliability Engg & System Safety, vol. 46, no. 2, pp. 139–158,
1994.

[31] Z. Wang et al., “Industrial robot trajectory accuracy evaluation maps for
hybrid manufacturing process based on joint angle error analysis,” 2018.

[32] J. Wu et al., “A computational framework of kinematic accuracy relia-
bility analysis for industrial robots,” Applied Mathematical Modelling,
vol. 82, pp. 189–216, 2020.

[33] O. Michel, “Cyberbotics ltd. webotsTM: professional mobile robot sim-
ulation,” Intl J of Advanced Robotic Systems, vol. 1, no. 1, p. 5, 2004.

	Introduction
	A Brief Literature Survey
	Problem Definition
	Jampack: An efficient algorithm for 3D-BPP
	Algorithm Description
	Time Complexity Analysis

	Fault Recovery Module (FRM)
	Jampacker: The Bin-packing Framework
	Placement Planner
	FRM in Action
	Motion Planner

	Evaluation
	Dataset and Methodology for 3D-BPP
	Efficiency of Jampack
	Efficacy of FRM
	Overall performance of Jampacker

	Conclusions
	References

